
CONTRACTOR REPORT

SAND96-8226 Ž UC-405
Unlimited Release

Automatic Differentiation of the TAC02D
Finite Element Code Using ADIFOR

Alan Carle and Michael Fagan

Rice University CITI/CRPC
Houston, TX

Prepared by Sandia National Laboratories, Albuquerque, New Mexico 87185
and Livermore, California 94550 for the United States Department of Energy
under Contract LC-5164

Printed April 1996



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of thek employees, nor any
of the contractors, subcontractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors or subcontractors.

This reporl has been reproduced from the best available copy.

Available to DOE and DOE contractors from:

Office of Scientific and Technical Information
P. O. BOX 62
Oak Ridge, TN 37831

Prices available from (61 5) 576-8401, FTS 626-8401

Available to the public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.
Springfield, VA 22161



UC-405

SAND96-8226
Unlimited Release
Printed April 1996

Automatic Differentiation of the TAC02D Finite Element Code Using
ADIFOR

Alan Carle and Michael Fagan

Rice University CITI/CRPC
6100 S. Main St.

Houston, TX 77005

ABSTRACT

The need for sensitivities in particular applications is becoming increasingly important
in problems such as optimal design or control. In this study, we use ADIFOR to generate
derivative code for TAC02D, a finite element heat transfer code. Our study of TAC02D
indicates that AD IFOR-generated derivatives yield accurate derivatives at a fraction of the

time requirements of finite difference approximations, and space requirements proportional
to the number of variables.

3/4



:,



1. Introduction

In this report, we describe various aspects of our differentiation project for a radiative heat

transfer code. This code, called TAC02D, models various transient radiative heating effects

for two-dimensional geometries using a finite element method [3]. Our primary focus on

TAC02D was for the design of chemical vapor deposition reactors. Designers at Sandia

National Laboratories were using optimization methods to improve their heating chamber

designs [4].Consequently, the designers were interested in obtaining accurate derivatives,

and in obtaining them quickly. As we will demonstrate in this report, both objectives are

met by using the ADIFOR automatic differentiation tool.

Our report divides into a few sections. First, we summarize our methodology. Second,

, we describe the derivative generation process. Third, we demonstrate the accuracy of the

generated derivative code. Fourth, we discuss the time requirements of the generated deriva-

* tive code. Fifth,

with a summary

we discuss the space requirements of the generated code. Finally, we close

of results and some speculation about future investigations.

2. Methodology

Whenever feasible, we prefer to study the aspects of ADIFOR-generated derivatives on multi-

ple platforms. For TAC02D, we were able to use both an SGI Power Challenge (SGI/R8000)

platform, as well as an IBM RS 6000 Model 390 platform for our study. We used only one

node (out of four) on the SGI platform. As an additional point of interest, we processed the

source code on Sun workstations. So, our methodology consisted of these steps:

*

*

●

●

●

Obtain the SGI platform source and copy it

Port

Run

Port

to the Sun platform.

the code to the IBM RS6000 platform.

ADIFOR on the Suns, correcting all inconsistencies in the original code.

the ADIFOR-generated derivative code to the IBM RS6000.

5



.

.

● Port the ADIFOR-generated code to SGI.

. Run accuracy and efficiency tests on both platforms.

*

Porting TAC02D from the SGI to the RS6000 was straightforward. As a byproduct of

the porting process, however, we discovered and corrected a minor logic error in the original

source. The original source’s adaptive convergence test worked properly for non-linear cases,

but sometimes resulted in an infinite loop in linear cases. We corrected this error by moving

the convergence test code to a more appropriate block.

Sandia provided control and data files for several test cases. The test cases separated

into a simple case consisting of 2 heating elements and 800 total finite elements, and a more

realistic test consisting of 5 heating elements and 2424 total finite elements. We used the

simple case for debugging and development, but we used the more realistic test case for our

timing and accuracy tests.

3. Generating Derivatives

To generate derivative code, ADIFOR requires that all source code be type consistent, both

within a module, and between modules. Consequently, part of the preparation of source code

fOr ADIFOR processing often requires correcting type inconsistencies, especially in mature

codes. In TAC02D, the type inconsistencies originated from two main sources: a single

input routine that could read real, integer, or character arguments; and routines that reused

previously allocated memory.

The input routine followed a hoary Fortran tradition of passing a selection argument

to make the same routine perform different actions, depending on the selection argument.

Thus, the input routine can read integers in one part of the code, reals in another. This

multiple usage, however, is not type consistent (even though it is part of traditional Fortran

culture). The technique for handling this kind of inconsistency is simple renaming. Rather

than pass a selection argument, we simply cloned copies of the read routine, one uniquely

6



●

☛

named clone for each different value of the selection argument. We automated this cloning

transformation with a short perl script.

The second source of type inconsistencies involved memory management. Consequently,

the various inconsistencies were distributed throughout several routines. These inconsisten-

cies arose when the TAC02D developer would reuse some real number arrays (and parts of

arrays) as integer arrays (and rarely, some integer arrays were reused as real arrays). To

handle most of these reuse inconsistencies, we used a technique involving Fortran equiv-

alence. The arrays being reused resided in a several globally accessible Fortran common

blocks. Thus, for real arrays in the global areas, we simply declared an integer array, and

equivalence the real and integer array. This technique allowed us to change the array name

to its alias at call sites where there was an inconsistency. Again, rather than change these

cites by hand, we wrote a perl script to alter the appropriate arguments. This technique

sufficed for most of the troublesome call sites, but not all of them. Fortran equivalence is lim-

ited to common blocks, and some routines reused subroutine arguments, instead of common

storage. Consequently, we were forced to add extra arguments to some of these routines.

This kind of change requires some non-trivial (human) analysis, and, unfortunately, is not

easily automated. In addition, these changes took more than one iteration of consistency

checking to produce completely consistent source code for ADIFOR processing.

4. Accuracy

We validated the ADIFOR derivatives by comparing them to a progression of (forward) finite

difference runs. We chose three different step sizes: .01% of input value, .001% of input

value, and .0001% of input value. The results of the finite difference runs had several notable

features. Most importantly, the results indicated the convergence of finite differences to the

ADIFOR derivative value. In addition, the results indicated the difficulty of choosing an

appropriate step size. An excerpt of our comparison test for the SGI platform appears in

Figure 1. We also validated the ADIFOR derivative values across platforms. Our derivative

values were identical across platforms. Figure 2 shows some typical examples.

7



Element Difference Difference Difference ADIFOR

Label at step .0170 at step .001% at step .000170 Derivative

20 -3.11764706e+O0 3.60000000e+O0 3.99999999e+O0 3.64022605e+O0

594 4.04509804e+Ol 4.27000000e+Ol 4.30000000e+Ol 4.25795335e+Ol

2405 8.61274510e+Ol 8.0000OOOOe+Ol 8.0000OOOOe+Ol 7.97472102e+Ol

Figure 1: Accuracy of Finite Differences vs ADIFoR-generated derivatives (excerpt)

+

Element RS6000 Derivative SGI Derivative

51 3.13683799e+Ol 3.13683799e+Ol

998 2.42428801e+O0 2.42428801e+O0

Figure 2: ADIFOR-generated derivative values on RS6000 vs SGI

Requirements5. Time

Typically, a study of the time requirements for analytic derivatives (whether they are gen-

erated automatically or not) involves a comparison with finite differences. Consequently,

we studied the efficiency of ADIFOR-generated derivatives on both the RS6000 and the SGI

platform by comparing the computation time of the A~IFOR-generated code to the computa-

tion time of a simple forward difference scheme, using the .001% step size from our accuracy

studies. We chose this particular differencing scheme for two reasons:

1. Our simple scheme is one of the more time efficient differencing schemes. It is faster,

for example, than central differences or an adaptive step size method.

.
2. The engineers at Sandia used a similar scheme [4].

. Furthermore, on the RS6000 platform we investigated two different variations of ADIFOR

exception handling: the report-once mode, and the performance mode. These variations

differ in their treatment of the singular points of Fortran intrinsic functions. Report-once

8



.

*

w

a

.

mode checks the arguments of the intrinsic functions, and reports if any of the arguments

are singular values. This kind of checking has moderate overhead, but is indispensable for

diagnosing certain kinds of numerical errors. Performance mode, on the other hand, foregoes

this checking process in return for improved performance. More details on report-once mode

and performance mode can be found in the ADIFOR manual [1].

Our usual practice is to develop and test ADIFOR code with report-once mode. Once

we are satisfied that it does not have singularity problems, we reprocess the code using

performance mode. We adhered to this practice for our tests of TAC02D on the RS6000. For

the SGI platform, we used only performance mode, since the report-once mode tests on the

RS6000 verified that the cases under consideration had no singular value problems. For all

cases studied, we took the average running time of five separate executions to generate the

timing values.

On the RS6000 platform, our simple forward difference (FD) scheme took 1487.64 seconds

to compute 5 derivative values for 2424 nodes. By comparison, we found that report-once

mode delivered the same output in 1073.87 seconds (72.2Y0 of FD). The performance mode

derivatives reduced the time requirements to 776.16 seconds (52.2% of FD). For the SGI

platform, the FD scheme required 2160.72 seconds to complete the derivative calculations,

whereas the ADIFOR-generated code (using performance mode only) required only 1855.39

(85.8% of FD). We believe that the difference in comparable methods between the two

platforms is due to the difference in 1/0. In all cases, though, the time requirements of

ADIFOR-generated derivatives were superior to finite difference time requirements. Further-

more, as we noted earlier, we used a relatively fast difference scheme. Consequently, we

would see an even more favorable comparison with a more sophisticated scheme (like central

differences, or adaptive step). Our results are summarized in Figure 3.

6. Space Requirements .

We analyzed the space requirements for TAC02D’S ADIFOR-generated derivatives in terms

of two parameters: the ADIFOR independent variable upper bound (pmax) and the TAC02D

9



Configuration

RS6000/Report-once

RS6000/Performance

SGI/Performance

AD

Time

(see)

1073.872

776.163

1855.39

simple FD

Time

(see)

1487.64

1487.64

2160.72

AD/FD

(%)

72.2

52.2

85.8

Figure 3: Efficiency of ADIFOR-generated derivatives

global node array size (maza). The space requirements for all ADIFOR-generated derivative

code depend on pmax, since all derivative quantities computed by the program must have

one component for every independent variable. Moreover, if a TAC02D problem exceeds the

pmax parameter, pmaz must be changed and the derivative code recompiled. For TAC02D,

the independent variables were the heating element parameters.

The dependence of the derivative space requirements on the maza parameter is a conse-

quence of the original memory management scheme used by TAC02D. The original TAC02D

declared a global array for finite element node values. The size of this array (maza) was

designed to be as large as possible (taking up most of the available machine memory). The

ADIFOR-generated code, however, needed space for not only node values, but derivatives of

node values as well. To accommodate this extra space requirement, we reduced the size of

the global array by a factor of (pmax+l). The ADIFOR-generated derivative code declared

a derivative matrix of size (maxa * pmaz) to hold the derivative values. In other words, to

accommodate the extra space needed for derivatives, the largest possible number of nodes was

reduced by a factor of (pmax+l). For the TAC02D version we processed, the original value of

maxa was 6,000,000. Thus, we reduced maxa to 1,000,000, and ADIFOR automatically sized

the derivative values array to 5,000,000 values. For the test cases we studied, the number

of node values needed was much lower than the maximum. The largest case (2424 nodes, 5

heating elements) required 201,500 node values, and 1,007,500 derivative values.

10



a

a

7. Summary and Conclusions

our study of TAC02D indicated that ADIFOR-generated derivatives yielded accurate deriva-

tives at a fraction of the time requirements of finite difference approximations, and space

requirements proportional to the number of heating elements. While we were satisfied with

both the accuracy and efficiency of the ADIFOR-generated derivatives for TAC02D, we also

noted that we might be able to produce derivative values more efficiently if we use a technique

called simplified recurrence differentiation [2]. This technique saves work by not computing

derivative values during the early iterations of an iterative solver. Simplified recurrence dif-

ferentiation has yielded efficiency improvements on other types of codes (our own experience

has been with computational fluid dynamics), so we would expect efficiency improvement in

lrAc02D as well.

REFERENCES

[1] Christian Bischof, Alan Carle, Paul Hovland, Peyvand Khademi, and Andrew Mauer. Adifor 2.0 user’s

guide. Technical Report CRPC-TR95516-S, Rice University, March 1995. Revised: May 1995. Also

available as ANL/MCS-TM-192 from Argonne National Laboratory.

[2]Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen Williamson. Derivative

convergencefor iterative equation solvers. Optimization Methods and Software, 2:321–325, 1993.

[3] William E. Mason. Preliminary User’s Guide for Taco2d. Sandia National Laboratories, 1984.

[4] Christopher D. Moen, Paul A. Spence, and Juan C. Meza. Optimal heat transfer design of chemical

vapor deposition reactors. Technical Report Sand95-8223, Sandia National Laboratories, April 1995.

.

11



Unlimited Release

Initial Distribution:

MS9001
MS9214
MS9214
MS9214
MS9021
MS9021
MS0899
MS9018

Tom Hunter
M. E. John
L. M. Napolitano, Jr.
Juan C. Meza (20)
Technical Communications, 8815, for OSTI (10)
Technical Communications,881 5/Technical Library, MS0899, 4414
Technical Library, 4414 (4)
Central Technical Files, 8950-2 (3)

12


